If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (49x2 + -1) + 3x(7x + -1) = 7x + 1 Reorder the terms: (-1 + 49x2) + 3x(7x + -1) = 7x + 1 Remove parenthesis around (-1 + 49x2) -1 + 49x2 + 3x(7x + -1) = 7x + 1 Reorder the terms: -1 + 49x2 + 3x(-1 + 7x) = 7x + 1 -1 + 49x2 + (-1 * 3x + 7x * 3x) = 7x + 1 -1 + 49x2 + (-3x + 21x2) = 7x + 1 Reorder the terms: -1 + -3x + 49x2 + 21x2 = 7x + 1 Combine like terms: 49x2 + 21x2 = 70x2 -1 + -3x + 70x2 = 7x + 1 Reorder the terms: -1 + -3x + 70x2 = 1 + 7x Solving -1 + -3x + 70x2 = 1 + 7x Solving for variable 'x'. Reorder the terms: -1 + -1 + -3x + -7x + 70x2 = 1 + 7x + -1 + -7x Combine like terms: -1 + -1 = -2 -2 + -3x + -7x + 70x2 = 1 + 7x + -1 + -7x Combine like terms: -3x + -7x = -10x -2 + -10x + 70x2 = 1 + 7x + -1 + -7x Reorder the terms: -2 + -10x + 70x2 = 1 + -1 + 7x + -7x Combine like terms: 1 + -1 = 0 -2 + -10x + 70x2 = 0 + 7x + -7x -2 + -10x + 70x2 = 7x + -7x Combine like terms: 7x + -7x = 0 -2 + -10x + 70x2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(-1 + -5x + 35x2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-1 + -5x + 35x2)' equal to zero and attempt to solve: Simplifying -1 + -5x + 35x2 = 0 Solving -1 + -5x + 35x2 = 0 Begin completing the square. Divide all terms by 35 the coefficient of the squared term: Divide each side by '35'. -0.02857142857 + -0.1428571429x + x2 = 0 Move the constant term to the right: Add '0.02857142857' to each side of the equation. -0.02857142857 + -0.1428571429x + 0.02857142857 + x2 = 0 + 0.02857142857 Reorder the terms: -0.02857142857 + 0.02857142857 + -0.1428571429x + x2 = 0 + 0.02857142857 Combine like terms: -0.02857142857 + 0.02857142857 = 0.00000000000 0.00000000000 + -0.1428571429x + x2 = 0 + 0.02857142857 -0.1428571429x + x2 = 0 + 0.02857142857 Combine like terms: 0 + 0.02857142857 = 0.02857142857 -0.1428571429x + x2 = 0.02857142857 The x term is -0.1428571429x. Take half its coefficient (-0.07142857145). Square it (0.005102040819) and add it to both sides. Add '0.005102040819' to each side of the equation. -0.1428571429x + 0.005102040819 + x2 = 0.02857142857 + 0.005102040819 Reorder the terms: 0.005102040819 + -0.1428571429x + x2 = 0.02857142857 + 0.005102040819 Combine like terms: 0.02857142857 + 0.005102040819 = 0.033673469389 0.005102040819 + -0.1428571429x + x2 = 0.033673469389 Factor a perfect square on the left side: (x + -0.07142857145)(x + -0.07142857145) = 0.033673469389 Calculate the square root of the right side: 0.183503323 Break this problem into two subproblems by setting (x + -0.07142857145) equal to 0.183503323 and -0.183503323.Subproblem 1
x + -0.07142857145 = 0.183503323 Simplifying x + -0.07142857145 = 0.183503323 Reorder the terms: -0.07142857145 + x = 0.183503323 Solving -0.07142857145 + x = 0.183503323 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.07142857145' to each side of the equation. -0.07142857145 + 0.07142857145 + x = 0.183503323 + 0.07142857145 Combine like terms: -0.07142857145 + 0.07142857145 = 0.00000000000 0.00000000000 + x = 0.183503323 + 0.07142857145 x = 0.183503323 + 0.07142857145 Combine like terms: 0.183503323 + 0.07142857145 = 0.25493189445 x = 0.25493189445 Simplifying x = 0.25493189445Subproblem 2
x + -0.07142857145 = -0.183503323 Simplifying x + -0.07142857145 = -0.183503323 Reorder the terms: -0.07142857145 + x = -0.183503323 Solving -0.07142857145 + x = -0.183503323 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.07142857145' to each side of the equation. -0.07142857145 + 0.07142857145 + x = -0.183503323 + 0.07142857145 Combine like terms: -0.07142857145 + 0.07142857145 = 0.00000000000 0.00000000000 + x = -0.183503323 + 0.07142857145 x = -0.183503323 + 0.07142857145 Combine like terms: -0.183503323 + 0.07142857145 = -0.11207475155 x = -0.11207475155 Simplifying x = -0.11207475155Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.25493189445, -0.11207475155}Solution
x = {0.25493189445, -0.11207475155}
| 4x^2-6x=42 | | 171=4.5(8-zy) | | 1/2n=5/12*2/5 | | 1/4ln33 | | 171=4.5(8-x) | | -10(s+3)=-73 | | 18y+12y^2= | | 0x=-6-3 | | 2x^3+5x=14 | | 24/8=3/X | | -z-(z-6)=-8 | | 4x+5-2(2x-3)=16-3x | | 4x+5-2(2x-3)=16-3 | | 3nx-84=9x | | 89=29x | | J(2j+3)= | | 625x^4+175x^2-144=0 | | 4x+2y=506 | | 25x^4+7x^2-144=0 | | 6(3x+5)=42 | | 21x-35=14 | | 2x-24=7 | | 3x+3=2(x+3) | | 4y-3y+4=-7 | | 2x-y=-5x+3y-22 | | (9x-2)(4x)=0 | | 7t+2=2t+7 | | Sinx=0.883116 | | (m^2-1)=0 | | 7-2x=8x-(4x) | | (x^(-3n)-2y^(3n))^(1/3) | | 3=2log(28x+5) |